idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
13.12.2018 10:44

Röhrchen statt Platten: 2,5 Millionen Euro für Entwicklung neuartiger Elektrolysezelle

Dr. Susanne Langer Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Chemiker, Werkstoffwissenschaftler und Chemieingenieure der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) entwickeln gemeinsam mit externen Partnern eine neuartige Mikrozelle für die Wasserelektrolyse: Sie wollen die herkömmlichen Plattenelektroden, die zur Spaltung von Wasser in Sauerstoff und Wasserstoff verwendet werden, durch kompakte, nanostrukturierte Röhrchen ersetzen. Ziele sind eine vereinfachte Herstellung, ein flexiblerer Einsatz und die Einsparung teurer Edelmetalle. Das auf vier Jahre angelegte Projekt „Tubulyze”, das Anfang 2019 startet, wird mit insgesamt 2,5 Millionen Euro gefördert.

    Wasserstoff gilt als Hoffnungsträger für eine umwelt- und klimaschonende Speicherung und Bereitstellung von Energie. Das Element ist im Wassermolekül quasi unbegrenzt verfügbar, jedoch nicht leicht zu gewinnen: Für die Spaltung von Wasser in Sauerstoff und Wasserstoff bedarf es aufwändiger elektrolytischer Verfahren. Zumeist werden dafür großflächige, mit Katalysatoren beschichtete Plattenelektroden in riesige Wasserbecken getaucht. Um die chemische Elektrolyse unter hoch korrosiven Bedingungen zu ermöglichen, werden Katalysatoren aus teuren Edelmetallen wie Iridium und Platin eingesetzt. Auch die für den Ionenaustausch zwischen Anode und Kathode benötigte Membran ist ein beachtlicher Kostenfaktor.

    Röhrenzelle mit hauchdünner Katalysatorschicht
    Ingenieure und Chemiker der FAU erforschen nun eine Elektrolysezelle, die wesentliche Nachteile der herkömmlichen Technologie umgeht. Ihre Idee: Die Zelle ist nicht planar, sondern tubulär, also röhrenförmig aufgebaut. Kernstück ist eine aus porösem Titan bestehende Elektrode, die am Lehrstuhl für Werkstoffkunde und Technologie der Metalle (Prof. Dr. Carolin Körner) im 3D-Druckverfahren hergestellt wird. Die Oberfläche der Elektrode wird anschließend nanostrukturiert und durch Atomlagenabscheidung mit einer hauchdünnen Katalysatorschicht – im konkreten Fall mit Iridium – überzogen. „Wir können auf die Stärke eines Atoms genau bestimmen, wie dick die aufgetragene Schicht sein soll“, erklärt Prof. Dr. Julien Bachmann vom Lehrstuhl „Chemistry of Thin Film Materials“, der das Projekt koordiniert. „So erreichen wir ein optimales Preis-Leistungs-Verhältnis, denn eine dickere Katalysatorschicht führt nicht linear zu einer größeren Stromstärke beziehungsweise zu einem erhöhten Umsatz.“

    Kompakt: Schichten liegen direkt aufeinander
    Ein entscheidender Vorteil des tubulären Aufbaus ist, dass die Ionenaustausch-Membran direkt auf die Titanelektrode extrudiert werden kann. Diese Verbindung mit der Trägerelektrode ist wesentlich robuster und kostengünstiger als bei planaren Modellen. Als Kathode zur Wasserstoffabspaltung fungiert ein Kohlenstoffvlies, das mit Platin beschichtet ist. Ein Mantel aus elektrisch leitendem Kompositmaterial schließlich bildet die äußere Hülle der Elektrolyseröhre und dient als Elektronenleiter. „Die einzelnen Schichten können in wenigen Fertigungsschritten kombiniert werden und machen die Elektrolyseröhre kompakt und preiswert“, sagt Julien Bachmann. „Außerdem lässt sich die Zahl der eingesetzten Röhrchen viel flexibler an den jeweiligen Wasserstoffbedarf anpassen, als das bei großflächigen Plattenelektroden möglich ist.“

    Ziel: industrielle Anwendung in vier bis acht Jahren
    Mit insgesamt 2,5 Millionen Euro fördert das Bundesministerium für Bildung und Forschung (BMBF) das auf vier Jahre angelegte interdisziplinäre Forschungsprojekt „Tubulyze“. Bis zur industriellen Anwendung bedarf es noch wichtiger Optimierungen, etwa bei der Mikrostruktur der inneren Titananode. Hier müssen die Forscher abwägen, wie das Material beschaffen sein soll. Ist es sehr porös, wird es zwar besser vom Wasser durchströmt, aber die Elektronen fließen schlechter. Bei geringer Porosität ist es umgekehrt. Deshalb suchen Forscher der Arbeitsgruppe um Prof. Dr. Jens Harting am Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien (HI ERN) nach der optimalen Geometrie, die bei maximierter Elektronenaustauschfläche die beste Balance zwischen Wasser- und Stromfluss bietet. An der Hochschule für Angewandte Wissenschaften Hamburg wird die Elektrolysezelle aus den unterschiedlichen Komponenten zusammengebaut und getestet, am Dechema-Forschungsinstitut in Frankfurt (Main) werden Stabilitätstests durchgeführt. Julien Bachmann: „Unser Ziel ist es, ein vereinfachtes und materialsparendes Fertigungsverfahren der tubulären Elektrolysezellen zu etablieren, das die Energiespeicherung durch Wasserelektrolyse günstiger und attraktiver macht.“


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Julien Bachmann
    Tel.: 09131/85-27396
    julien.bachmann@fau.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Energie, Werkstoffwissenschaften
    überregional
    Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).