idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.06.2019 11:15

Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    In der makroskopischen Welt ist der Zerfall unerbittlich: Zerbrochene Gegenstände fügen sich nicht von selbst wieder zusammen. In der Quantenwelt gelten jedoch andere Gesetze: Neue Forschungen zeigen, dass sogenannte Quasiteilchen zerfallen und sich wieder reorganisieren können und damit gewissermaßen unsterblich sind. Gute Aussichten für die Entwicklung haltbarer Datenspeicher.

    Nichts hält ewig, sagt der Volksmund. Die Gesetze der Physik bestätigen dies: Alle Prozesse auf unserem Planeten vergrößern die Entropie, also die molekulare Unordnung. Ein zerbrochenes Glas beispielsweise würde sich niemals von selbst wieder zusammenfügen.

    Was in der Alltagswelt undenkbar erscheint, ist auf mikroskopischer Ebene möglich, das haben Theoretische Physiker der Technischen Universität München (TUM) und des Max-Planck Instituts für die Physik komplexer Systeme herausgefunden.

    „Bisher ist man davon ausgegangen, dass Quasiteilchen in wechselwirkenden Quantensystemen nach einer gewissen Zeit zerfallen. Jetzt wissen wir, dass das Gegenteil der Fall ist: Starke Wechselwirkungen können den Zerfall sogar komplett stoppen“, erklärt Frank Pollmann, Professor für Theoretische Festkörperphysik der TUM. Ein Beispiel für solche Quasiteilchen sind kollektive Gitterschwingungen in Kristallen, sogenannte Phononen.

    Den Begriff des Quasiteilchens prägte der Physiker und Nobelpreisträger Lew Dawidowitsch Landau. Er beschrieb damit kollektive Zustände von vielen Teilchen, beziehungsweise deren Wechselwirkungen durch elektrische oder magnetische Kräfte. Durch diese Interaktion verhalten sich mehrere Teilchen wie ein einzelnes.

    Numerische Methoden eröffnen neue Perspektiven

    „Welche Prozesse das Schicksal dieser Quasiteilchen in wechselwirkenden Systemen im Detail beeinflussen, war bisher allerdings nicht bekannt“, berichtet Pollmann. „Erst jetzt verfügen wir über numerische Methoden, mit denen wir komplexe Wechselwirkungen berechnen können und außerdem über Computer, die leistungsfähig genug sind, diese Gleichungen zu lösen.“
    „Das Ergebnis der aufwendigen Simulation: Quasiteilchen zerfallen zwar, aus den Bruchstücken entstehen aber neue, identische Teilchengebilde“, sagt Erstautor Ruben Verresen. „Wenn dieser Zerfall sehr schnell abläuft, kommt es nach einer gewissen Zeit zu einer Umkehrung der Reaktion, und die Trümmer finden sich wieder zusammen. Dieser Prozess kann sich unendlich wiederholen, es entsteht eine anhaltende Schwingung zwischen Zerfall und Wiedergeburt.“

    Diese Schwingung ist physikalisch betrachtet eine Welle, die in Materie umgewandelt wird – was gemäß dem quantenmechanischen Welle-Teilchen-Dualismus möglich ist. Damit verstoßen die unsterblichen Quasiteilchen auch nicht gegen den zweiten Hauptsatz der Thermodynamik. Ihre Entropie bleibt konstant, der Zerfall ist gestoppt.

    Der Realitäts-Check

    Die Entdeckung erklärt auch Phänomene, die bisher rätselhaft waren. Experimentalphysiker hatten gemessen, dass die magnetische Verbindung Ba3CoSB2O9 erstaunlich stabil ist. Magnetische Quasiteilchen, die Magnonen, sind dafür verantwortlich. Andere Quasiteilchen, die Rotonen, sorgen dafür, dass Helium, an der Erdoberfläche ein Gas, am absoluten Nullpunkt eine Flüssigkeit wird, die widerstandslos fließen kann.

    „Unsere Arbeit ist reine Grundlagenforschung“, betont Pollmann. Es sei aber gut möglich, dass die Ergebnisse eines Tages auch Anwendungen erlauben – beispielsweise den Bau langlebiger Datenspeicher für zukünftige Quantencomputer.

    Mehr Informationen:

    Die Forschungsarbeiten wurden gefördert durch das European Research Council (ERC) und die Deutsche Forschungsgesellschaft DFG im Rahmen des SFB 1143, der Research Unit FOR1807 sowie durch den Exzellenzcluster Nanosystems Initiative Munich (NIM). Die Arbeiten werden im neuen Exzellenzcluster Munich Center for Quantum Science and Technology (MCQST) fortgeführt.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Frank Pollmann
    Professur für Theoretische Festkörperphysik
    James-Franck-Str. 1
    85748 Garching
    Tel.: +49 89 289 53760
    E-Mail: frank.pollmann@tum.de
    Web: http://tccm.pks.mpg.de


    Originalpublikation:

    Ruben Verresen, Roderich Moessner & Frank Pollmann
    Avoided quasiparticle decay from strong quantum interactions
    nature physics, 27. Mai 2019
    DOI: 10.1038/s41567-019-0535-3


    Weitere Informationen:

    https://www.nature.com/articles/s41567-019-0535-3
    https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35491/
    https://mediatum.ub.tum.de/1506313
    http://www.professoren.tum.de/de/pollmann-frank/
    https://www.mcqst.de/


    Bilder

    Starke Quantenwechselwirkungen verhindern den Zerfall von Quasiteilchen.
    Starke Quantenwechselwirkungen verhindern den Zerfall von Quasiteilchen.
    K. Verresen / TUM
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).