idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
10.06.2020 11:55

Wie Krebszellen unter Stress Chemo-Resistenzen entwickeln

Alexandra Frey Öffentlichkeitsarbeit
Universität Wien

    Ein großes Problem in der Krebstherapie ist die Resistenz gegenüber chemotherapeutischen Maßnahmen. Besonders bei wiederkehrenden Erkrankungen zeigen sich die Krebszellen gegenüber der Behandlung oft unempfindlich. Ein internationales Team um die Biochemiker Robert Ahrends von der Universität Wien und Jan Medenbach von der Universität Regensburg hat nun Chemo-Resistenzen als Folge einer speziellen zellulären Stressreaktion identifiziert, die bei den Krebszellen durch ungefaltete Proteine ausgelöst wird und Veränderungen im zellulären Stoffwechsel nach sich zieht. Den neuen Mechanismus stellen die Forscher*innen nun in "Nature Communications" vor.

    Die Ursachen von Chemo-Resistenzen sind vielfältig und häufig nur unzureichend verstanden. In vielen Fällen scheint die sogenannte zelluläre Stressantwort beteiligt zu sein – also eine Reihe an genetischen Programmen, die es den Zellen ermöglichen, auch unter schlechten Bedingungen überleben zu können. Es braucht dringend ein detailliertes Verständnis dieser Stressantwort, um das Auftreten von Chemo-Resistenzen besser verstehen und neue Therapieansätze entwickeln zu können. "Unser Augenmerk galt insbesondere der Unfolded Protein Response, einer zellulären Stressreaktion, welche durch ungefaltete Proteine ausgelöst wird", sagt Robert Ahrends, Gruppenleiter am Institut für Analytische Chemie der Fakultät für Chemie.

    Antwort auf ungefaltete Proteine

    Die Unfolded Protein Response (UPR) ist dabei nicht nur an der Chemo-Resistenz und dem Fortschreiten von Krebsleiden beteiligt, sondern spielt auch bei einer Vielzahl weiterer Erkrankungen eine wichtige Rolle, z.B. bei Diabetes oder neurodegenerativen Krankheiten. Um die UPR molekularbiologisch genau zu erfassen, wendeten die Forscher modernste analytische Methoden in Rahmen eines Multiomics-Ansatzes an – also die Kombination von großen Datensätzen aus der Genetik, Protein- und-Stoffwechselforschung.

    "Wir haben eine Reihe an Genen identifiziert, welche unter Stress aktiviert werden und helfen sollen, das Überleben der Zelle zu sichern", so dass Team: "Unter den identifizierten Molekülen finden sich nicht nur die bereits bekannten Gene der UPR, sondern auch eine Vielzahl Weiterer, die zuvor noch nicht mit der zellulären Stress-Antwort in Verbindung gebracht wurden und welche eine wichtige Funktion im zellulären Stoffwechsel ausüben."

    Änderungen im Kohlenstoff-Stoffwechsel

    Die Regulation dieser Gene unter Stress führt zu einem veränderten Folsäure-abhängigen Ein-Kohlenstoff-Metabolismus. Veränderungen des zellulären Stoffwechsels sind charakteristisch für viele Krebsleiden, wie auch bereits Nobelpreisträger Otto Warburg in den 1930er Jahren in seinen bahnbrechenden Arbeiten demonstrierte, und helfen den Krebszellen ihr schnelles Wachstum aufrecht zu erhalten.
    Nachdem die Forscher*innen in Tumorzellen Stress ausgelöst hatten, beobachteten sie – über eine Veränderung des 1C-Metabolismus hinausgehend – auch eine vollständige Resistenz der Zellen gegenüber Chemotherapeutika, die eben diesen Stoffwechselweg angreifen. Dazu zählen Substanzen wie Methotrexat, das klinisch zur Behandlung von unterschiedlichen Krebsleiden und rheumatischen Erkrankungen breit eingesetzt wird. Detaillierte biochemische und genetische Untersuchungen bestätigten, dass es sich bei der entdeckten Stress-vermittelten Resistenz um einen neuartigen Mechanismus handelt, dessen genaue Entschlüsselung verbesserte Konzepte und Ansätze zur Überwindung von Resistenzen in der Krebstherapie erhoffen lässt.

    Publikation in "Nature Communications":
    Reich S, Nguyen CDL, Has C, Steltgens S, Soni H, Coman C, Freyberg M, Bichler A, Seifert N, Conrad D, Knobbe-Thomsen CB, Tews B, Toedt G, Ahrends R,* und Medenbach J*: A multi-omics analysis reveals the Unfolded Protein Response regulon and a role of eIF2-phosphorylation in resistance to folate-based anti-metabolites. DOI:10.1038/s41467-020-16747-y


    Wissenschaftliche Ansprechpartner:

    Ass.-Prof. Dr. Robert Ahrends
    Institut für Analytische Chemie
    Universität Wien
    1090 - Wien, Währinger Straße 38
    +43-1-4277-52304
    robert.ahrends@univie.ac.at


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Medizin
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).