idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.06.2020 13:52

Atomic physics: radiation pressure with recoil

Jennifer Hohensteiner Public Relations und Kommunikation
Goethe-Universität Frankfurt am Main

    Light exerts a certain amount of pressure onto a body: sun sails could thus power space probes in the future. However, when light particles (photons) hit an individual molecule and knock out an electron, the molecule flies toward the light source. Atomic physicists at Goethe University have now observed this for the first time, confirming a 90 year-old theory.

    FRANKFURT. As early as the 16th century, the great scholar Johannes Kepler postulated that sunlight exerted a certain pressure, as the tail of the comets he observed consistently pointed away from the sun. In 2010 the Japanese space probe Ikaros used a sun sail for the first time in order to use the power of sunlight to gain a little speed.

    Physically and intuitively, the pressure of light or radiation can be explained by the particle characteristic of light: light particles (photons) strike the atoms of a body and transfer a portion of their own momentum (mass times speed) onto that body, which thus becomes faster.

    However, when in the 20th century physicists studied this momentum transfer in the laboratory during experiments on photons of certain wavelengths which knocked individual electrons out of atoms, they were met by a surprising phenomenon: the momentum of the ejected electron was greater than that of the photon that struck it. This is actually impossible – since Isaac Newton it has been known that within a system, for every force there must exist an equal but opposite force: the recoil, so to speak. For this reason, the Munich scientist Arnold Sommerfeld concluded in 1930 that the additional momentum of the ejected electron must come from the atom it left. This atom must fly in the opposite direction; in other words, toward the light source. However, this was impossible to measure with the instruments available at that time.

    Ninety years later the physicists in the team of doctoral student Sven Grundmann and Professor Reinhard Dörner from the Institute for Nuclear Physics have succeeded for the first time in measuring this effect using the COLTRIMS reaction microscope developed at Goethe University Frankfurt. To do so, they used X-rays at the accelerators DESY in Hamburg and ESRF in French Grenoble, in order to knock electrons out of helium and nitrogen molecules. They selected conditions that would require only one photon per electron. In the COLTRIMS reaction microscope, they were able to determine the momentum of the ejected electrons and the charged helium and nitrogen atoms – which are called ions – with unprecedented precision.

    Professor Reinhard Dörner explains: “We were not only able to measure the ion’s momentum, but also see where it came from – namely, from the recoil of the ejected electron. If photons in these collision experiments have low energy, the photon momentum can be neglected for theoretical modelling. With high photon energies, however, this leads to imprecision. In our experiments, we have now succeeded in determining the energy threshold for when the photon momentum may no longer be neglected. Our experimental breakthrough allows us to now pose many more questions, such as what changes when the energy is distributed between two or more photons.”

    Publication: Sven Grundmann, Max Kircher, Isabel Vela-Perez, Giammarco Nalin, Daniel Trabert, Nils Anders, Niklas Melzer, Jonas Rist, Andreas Pier, Nico Strenger, Juliane Siebert, Philipp V. Demekhin, Lothar Ph. H. Schmidt, Florian Trinter, Markus S. Schöffler, Till Jahnke, and Reinhard Dörner: Observation of Photoion Backward Emission in Photoionization of He and N2. Phys. Rev. Lett. 124, 233201 https://doi.org/10.1103/PhysRevLett.124.233201

    Further information:
    Prof. Dr. Reinhard Dörner
    Institute for Nuclear Physics
    Tel. +49 69 798-47003
    doerner@atom.uni-frankfurt.de
    https://www.atom.uni-frankfurt.de/

    Current news about science, teaching, and society can be found on GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

    Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: www.goethe-universitaet.de

    Publisher: The President of Goethe University Editor: Dr. Markus Bernards, Science Editor, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531, bernards@em.uni-frankfurt.de


    Wissenschaftliche Ansprechpartner:

    Institute for Nuclear Physics
    Tel. +49 69 798-47003
    doerner@atom.uni-frankfurt.de
    https://www.atom.uni-frankfurt.de/


    Originalpublikation:

    Sven Grundmann, Max Kircher, Isabel Vela-Perez, Giammarco Nalin, Daniel Trabert, Nils Anders, Niklas Melzer, Jonas Rist, Andreas Pier, Nico Strenger, Juliane Siebert, Philipp V. Demekhin, Lothar Ph. H. Schmidt, Florian Trinter, Markus S. Schöffler, Till Jahnke, and Reinhard Dörner: Observation of Photoion Backward Emission in Photoionization of He and N2. Phys. Rev. Lett. 124, 233201 https://doi.org/10.1103/PhysRevLett.124.233201


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).