idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.09.2020 16:32

TV-Serie „Biohackers“ auf DNA gespeichert

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Die erste Folge der neu erschienenen TV-Serie „Biohackers“ wurde in Form von synthetischer DNA gespeichert. Möglich macht das die Forschungsleistung von Professor Reinhard Heckel von der Technischen Universität München (TUM) und seines Kollegen Professor Robert Grass von der ETH Zürich. Sie haben eine Methode entwickelt, die das Speichern großer Datenmengen auf DNA für über 1000 Jahre stabil macht.

    Herr Prof. Heckel, in „Biohackers“ geht es um eine Medizinstudentin, die sich an einer Professorin mit dunkler Vergangenheit rächen will – und um die Manipulation von DNA durch den Einsatz von Biotechnologie. Sie hatten den Auftrag, den Inhalt der Serie auf DNA zu speichern. Wie funktioniert so etwas?

    Prof. Heckel: Zunächst sprechen wir hier von künstlich generierter, also synthetischer DNA. DNA besteht aus vier Bausteinen: den Nukleotiden Adenin (A), Thymin (T), Guanin (G) und Cytosin (C). Computer-Daten sind wiederum als Nullen und Einsen kodiert. Die erste Folge von „Biohackers“ besteht aus einer Reihung von etwa 600 Millionen Nullen und Einsen. Wollen wir jetzt beispielsweise die Reihe 01 01 11 00 in DNA speichern, legen wir fest, welche Zahlenkombination welchem Buchstaben entspricht, etwa: 00 ist A, 01 ist C, 10 ist G und 11 ist T. In unserem Beispiel ergibt sich dann die DNA-Sequenz CCTA. Nach diesem Prinzip des „DNA Data Storage“ haben wir die erste Folge der Serie auf DNA gespeichert.

    Und um die Serie abspielen zu können, werden die Buchstaben einfach „zurückübersetzt“?

    Prof. Heckel: So kann man sich das – sehr vereinfacht – vorstellen. Allerdings passieren beim Schreiben, Speichern und Lesen der DNA Fehler. Werden diese Fehler nicht korrigiert, gehen die Daten, die auf der DNA gespeichert sind, verloren. Um das Problem zu lösen, habe ich einen Algorithmus entwickelt, der auf Kanalkodierung basiert. Kanalkodierung beschäftigt sich damit, Fehler, die bei der Informationsübertragung passieren, zu korrigieren. Die Idee dahinter ist, den Daten Redundanz hinzuzufügen. Stellen Sie sich Sprache vor: Wenn wir ein Wort mit fehlenden oder falschen Buchstaben lesen oder hören, schafft es die Rechenleistung unseres Gehirns trotzdem, das Wort zu verstehen. Der Algorithmus folgt dem gleichen Prinzip: er encodiert die Daten so redundant, dass später auch von sehr fehlerhafter DNA Daten wiederhergestellt werden können.

    Kanalkodierung wird in vielen Gebieten, auch in der Telekommunikation eingesetzt. Was war die Herausforderung bei der Entwicklung Ihrer Lösung?

    Prof. Heckel: Die erste Herausforderung war, einen Algorithmus zu schaffen, der spezifisch für die in DNA vorkommenden Fehler ausgelegt ist. Die zweite Herausforderung bestand darin, den Algorithmus so effizient zu machen, dass möglichst viele Daten auf einer möglichst kleinen Menge DNA gespeichert werden können, und somit nur absolute notwendige Redundanz hinzugefügt wird. Wir haben gezeigt, dass unser Algorithmus in diesem Sinne optimal ist.

    „DNA Data Storage“ ist sehr teuer, da die Herstellung von DNA und das Lesen sehr aufwendig sind. Was macht DNA dennoch als Speichermedium attraktiv?

    Prof. Heckel: Zum einen ist die Informationsdichte auf DNA sehr hoch. Das ermöglicht die Speicherung riesiger Datenmengen auf kleinstem Raum. Im Fall der Serie sind es zwar “nur” 100 Megabyte auf einem Picogram, also einem billionstel Gramm DNA. Theoretisch wären aber bis zu 200 Exabyte auf einem Gramm DNA möglich. Zum anderen hält sich DNA sehr lange. Zum Vergleich: Wenn Ihr PC und dessen Festplatte immer ausgeschaltet beziehungsweise unbeschrieben blieben, würden die Daten nach ein paar Jahren verschwinden. DNA hingegen, richtig verpackt, kann viele tausend Jahre stabil bleiben.

    Auch Dank der von Ihnen entwickelten Methode, die DNA-Stränge robust, fast „unkaputtbar“ macht.

    Prof. Heckel: Mein Kollege Robert Grass war der erste, der ein Verfahren entwickelt hat, das DNA-Stränge in Nanometer große Kügelchen aus Silica, eine Glas-Art, kapsuliert und sie damit „stabil verpackt.“ Damit ist die DNA mechanisch geschützt. Gemeinsam haben wir bereits 2015 ein Paper verfasst, das unseren Algorithmus und Prof. Grass‘ Kapsulierung als das erste robuste DNA Data Storage vorstellt. Seitdem haben wir die Methode immer weiterentwickelt. In unserer jüngsten Publikation in Nature Protocols von Januar 2020 geben wir unsere Erfahrungen weiter.

    Was sind Ihre nächsten Schritte? Hat das Speichern von Daten auf DNA Zukunft?

    Prof. Heckel: Wir arbeiten daran, DNA Data Storage günstiger und schneller zu machen. „Biohackers“ war ein Meilenstein in Richtung Kommerzialisierung, doch es liegt noch ein weiter Weg vor uns. Wenn sich die Technologie durchsetzt, ist Großes möglich. Ganze Bibliotheken, sämtliche Filme, Fotos, Musik, Wissen jeglicher Art – soweit in Daten abbildbar – könnte auf DNA gespeichert werden und der Menschheit somit für immer zur Verfügung stehen.

    Publikation:

    Linda C. Meiser, Philipp L. Antkowiak, Julian Koch, Weide D.Chen, A.Xavier Kohll, Wendelin J. Stark, Reinhard Heckel, Robert N. Grass: „Reading and writing digital data in DNA“. Erschienen in Nature Protocols im Januar 2020. DOI: 10.1038/s41596-019-0244-5

    www.nature.com/articles/s41596-019-0244-5


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Reinhard Heckel
    Technische Universität München
    Professur für Machine Learning
    Tel: +49 89 289 28527
    reinhard.heckel@tum.de
    www.tum.de


    Originalpublikation:

    Linda C. Meiser, Philipp L. Antkowiak, Julian Koch, Weide D.Chen, A.Xavier Kohll, Wendelin J. Stark, Reinhard Heckel, Robert N. Grass: „Reading and writing digital data in DNA“. Erschienen in Nature Protocols im Januar 2020. DOI: 10.1038/s41596-019-0244-5
    www.nature.com/articles/s41596-019-0244-5


    Weitere Informationen:

    http://www.bbc.com/future/article/20151122-this-is-how-to-store-human-knowledge-... Beitrag der BBC über Prof. Grass und Prof. Heckel: "This is how to store human knowledge for eternity"


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Informationstechnik
    überregional
    Forschungsprojekte, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).