idw - Informationsdienst
Wissenschaft
Physiker der Westfälischen Wilhelms-Universität Münster haben in Modell-Simulationen nachgewiesen, dass die COVID-19-Infektionszahlen durch „Social Distancing“ deutlich sinken. Sie kombinierten dazu die "dynamische Dichtefunktionaltheorie" zur Beschreibung von wechselwirkenden Teilchen und das "SIR-Modell", eine Theorie zur Beschreibung der Ausbreitung von Infektionskrankheiten.
Infolge des weltweiten Ausbruchs der Krankheit COVID-19, verursacht durch das neue Coronavirus SARS-CoV-2, arbeiten Wissenschaftlerinnen und Wissenschaftler weltweit mit Hochdruck an der Erforschung von Infektionskrankheiten. Dies betrifft nicht nur Virologen, sondern auch Physiker, die mathematische Modelle zur Beschreibung der Ausbreitung von Epidemien entwickeln. Solche Modelle sind wichtig, um die Auswirkungen verschiedener Maßnahmen zur Eindämmung der Krankheit – etwa Gesichtsmasken, Schließungen von öffentlichen Gebäuden und Geschäften, oder das bekannte "Social Distancing", also das Abstandhalten zur Vermeidung von Ansteckungen – zu testen. Diese Modelle dienen oftmals als Grundlage für politische Entscheidungen und stärken die Legitimation ergriffener Maßnahmen.
Die Physiker Michael te Vrugt, Jens Bickmann und Prof. Dr. Raphael Wittkowski vom Institut für Theoretische Physik und Center for Soft Nanoscience der Westfälischen Wilhelms-Universität Münster (WWU) haben ein neues Modell zur Ausbreitung von ansteckenden Krankheiten entwickelt. Die Arbeitsgruppe von Raphael Wittkowski beschäftigt sich mit Statistischer Physik, also der Beschreibung von Systemen, die aus sehr vielen Teilchen bestehen. Dabei nutzen die Physiker unter anderem "dynamische Dichtefunktionaltheorie" (DDFT), eine in den 1990er Jahren entwickelte Methode, welche die Beschreibung von wechselwirkenden Teilchen ermöglicht.
Zu Beginn der Corona-Pandemie kam ihnen die Idee, dass die gleiche Methode zur Beschreibung der Ausbreitung von Krankheiten hilfreich ist. "Menschen, die Social Distancing betreiben – die also versuchen, Abstand voneinander zu halten – kann man sich im Prinzip wie Teilchen vorstellen, die sich gegenseitig abstoßen, weil sie zum Beispiel die gleiche elektrische Ladung haben" erklärt Erstautor Michael te Vrugt. "Also kann man Theorien, die abstoßende Teilchen beschreiben, vielleicht auch auf voneinander Abstand haltenden Menschen anwenden." Basierend auf dieser Idee entwickelten sie das sogenannte "SIR-DDFT-Modell", welches das SIR-Modell (eine bekannte Theorie zur Beschreibung der Ausbreitung von Infektionskrankheiten) mit DDFT kombiniert. Die resultierende Theorie beschreibt Menschen, die sich gegenseitig anstecken können, die aber auch Abstand voneinander halten. "Sie ermöglicht es zudem, räumliche Hotspots von Infizierten zu beschreiben und damit die Dynamik von sogenannten 'Superspreader-Ereignissen', wie dem Karneval in Heinsberg oder Apres-Ski in Ischgl, besser zu verstehen." ergänzt Mitautor Jens Bickmann. Die Studienergebnisse sind nun in der Fachzeitschrift "Nature Communications" veröffentlicht.
Das Ausmaß des Social Distancing wird dann durch die Stärke der abstoßenden Wechselwirkung beschrieben. "Dadurch kann man mithilfe der Theorie auch die Auswirkungen von Social Distancing testen, indem man eine Epidemie mit verschiedenen Werten der Parameter, die die Stärke der Wechselwirkung beschreiben, simuliert", erläutert Studienleiter Raphael Wittkowski. Die Simulationen zeigen, dass die Infektionszahlen durch Social Distancing tatsächlich deutlich sinken. Damit reproduziert das Modell den bekannten "Flatten-The-Curve-Effekt", bei dem die Kurve, die den zeitlichen Verlauf der Anzahl der Erkrankten beschreibt, als eine Folge des Abstand-Haltens deutlich flacher wird. Gegenüber existierenden Theorien hat das neue Modell den Vorteil, dass die Auswirkungen von sozialen Interaktionen explizit modelliert werden können.
Jun.-Prof. Dr. Raphael Wittkowski
Institut für Theoretische Physik
Westfälische Wilhelms-Universität Münster
Telephone: +49 (0)251 83 34529
Email: raphael.wittkowski@uni-muenster.de
M. te Vrugt, J. Bickmann, R. Wittkowski (2020). Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory. Nature Communications, DOI: 10.1038/s41467-020-19024-0
Simulationen basierend auf einem neuen Modell für die Ausbreitung von Epidemien, zeigen die Abnahme ...
M. te Vrugt et al./Nature Research
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).