idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.11.2020 14:31

Physik-Modell: Ausbreitungen von Infektionskrankheiten verstehen

Dr. Kathrin Kottke Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfälische Wilhelms-Universität Münster

    Physiker der Westfälischen Wilhelms-Universität Münster haben in Modell-Simulationen nachgewiesen, dass die COVID-19-Infektionszahlen durch „Social Distancing“ deutlich sinken. Sie kombinierten dazu die "dynamische Dichtefunktionaltheorie" zur Beschreibung von wechselwirkenden Teilchen und das "SIR-Modell", eine Theorie zur Beschreibung der Ausbreitung von Infektionskrankheiten.

    Infolge des weltweiten Ausbruchs der Krankheit COVID-19, verursacht durch das neue Coronavirus SARS-CoV-2, arbeiten Wissenschaftlerinnen und Wissenschaftler weltweit mit Hochdruck an der Erforschung von Infektionskrankheiten. Dies betrifft nicht nur Virologen, sondern auch Physiker, die mathematische Modelle zur Beschreibung der Ausbreitung von Epidemien entwickeln. Solche Modelle sind wichtig, um die Auswirkungen verschiedener Maßnahmen zur Eindämmung der Krankheit – etwa Gesichtsmasken, Schließungen von öffentlichen Gebäuden und Geschäften, oder das bekannte "Social Distancing", also das Abstandhalten zur Vermeidung von Ansteckungen – zu testen. Diese Modelle dienen oftmals als Grundlage für politische Entscheidungen und stärken die Legitimation ergriffener Maßnahmen.

    Die Physiker Michael te Vrugt, Jens Bickmann und Prof. Dr. Raphael Wittkowski vom Institut für Theoretische Physik und Center for Soft Nanoscience der Westfälischen Wilhelms-Universität Münster (WWU) haben ein neues Modell zur Ausbreitung von ansteckenden Krankheiten entwickelt. Die Arbeitsgruppe von Raphael Wittkowski beschäftigt sich mit Statistischer Physik, also der Beschreibung von Systemen, die aus sehr vielen Teilchen bestehen. Dabei nutzen die Physiker unter anderem "dynamische Dichtefunktionaltheorie" (DDFT), eine in den 1990er Jahren entwickelte Methode, welche die Beschreibung von wechselwirkenden Teilchen ermöglicht.

    Zu Beginn der Corona-Pandemie kam ihnen die Idee, dass die gleiche Methode zur Beschreibung der Ausbreitung von Krankheiten hilfreich ist. "Menschen, die Social Distancing betreiben – die also versuchen, Abstand voneinander zu halten – kann man sich im Prinzip wie Teilchen vorstellen, die sich gegenseitig abstoßen, weil sie zum Beispiel die gleiche elektrische Ladung haben" erklärt Erstautor Michael te Vrugt. "Also kann man Theorien, die abstoßende Teilchen beschreiben, vielleicht auch auf voneinander Abstand haltenden Menschen anwenden." Basierend auf dieser Idee entwickelten sie das sogenannte "SIR-DDFT-Modell", welches das SIR-Modell (eine bekannte Theorie zur Beschreibung der Ausbreitung von Infektionskrankheiten) mit DDFT kombiniert. Die resultierende Theorie beschreibt Menschen, die sich gegenseitig anstecken können, die aber auch Abstand voneinander halten. "Sie ermöglicht es zudem, räumliche Hotspots von Infizierten zu beschreiben und damit die Dynamik von sogenannten 'Superspreader-Ereignissen', wie dem Karneval in Heinsberg oder Apres-Ski in Ischgl, besser zu verstehen." ergänzt Mitautor Jens Bickmann. Die Studienergebnisse sind nun in der Fachzeitschrift "Nature Communications" veröffentlicht.

    Das Ausmaß des Social Distancing wird dann durch die Stärke der abstoßenden Wechselwirkung beschrieben. "Dadurch kann man mithilfe der Theorie auch die Auswirkungen von Social Distancing testen, indem man eine Epidemie mit verschiedenen Werten der Parameter, die die Stärke der Wechselwirkung beschreiben, simuliert", erläutert Studienleiter Raphael Wittkowski. Die Simulationen zeigen, dass die Infektionszahlen durch Social Distancing tatsächlich deutlich sinken. Damit reproduziert das Modell den bekannten "Flatten-The-Curve-Effekt", bei dem die Kurve, die den zeitlichen Verlauf der Anzahl der Erkrankten beschreibt, als eine Folge des Abstand-Haltens deutlich flacher wird. Gegenüber existierenden Theorien hat das neue Modell den Vorteil, dass die Auswirkungen von sozialen Interaktionen explizit modelliert werden können.


    Wissenschaftliche Ansprechpartner:

    Jun.-Prof. Dr. Raphael Wittkowski
    Institut für Theoretische Physik
    Westfälische Wilhelms-Universität Münster
    Telephone: +49 (0)251 83 34529
    Email: raphael.wittkowski@uni-muenster.de


    Originalpublikation:

    M. te Vrugt, J. Bickmann, R. Wittkowski (2020). Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory. Nature Communications, DOI: 10.1038/s41467-020-19024-0


    Bilder

    Simulationen basierend auf einem neuen Modell für die Ausbreitung von Epidemien, zeigen die Abnahme der Infektionszahlen durch Social Distancing.
    Simulationen basierend auf einem neuen Modell für die Ausbreitung von Epidemien, zeigen die Abnahme ...

    M. te Vrugt et al./Nature Research


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).