idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.01.2021 12:41

New Technologies to Support Post-Editing of Machine Translations - MMPE Research Project Completed

Reinhard Karger M.A. DFKI Saarbrücken
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

    The quality of machine translation has improved significantly in recent years. Translators are increasingly shifting their activities to post-editing of machine translations. This saves time, reduces errors, but changes the way they interact with the text. In the MMPE project (Multi-modal and Language Technology-based Post-Editing Support for Machine Translation), an interdisciplinary team of DFKI researchers investigated how post-editing can be technologically supported. MMPE, led by Prof. Dr. Antonio Krüger and Prof. Dr. Josef van Genabith, was funded by the German Research Foundation (DFG) for a period of three and a half years, ending on December 31, 2020.

    Post-editing (PE) combines the advantages of artificial intelligence and human intelligence, but also shifts the focus of translation work: Instead of generating text, translators correct errors in otherwise helpful suggestions in the target language. Improving the frequently recurring machine translation (MT) errors is tedious; fixing hard-to-find or complex errors makes the job cognitively demanding.
    "While AI is good at quickly suggesting translation drafts, only a human with in-depth knowledge of the source and target languages can analyze lexical and semantic nuances and ensure that the meaning of the translation is identical," says project leader Prof. Dr. Josef van Genabith, outlining the benefits.
    The scientists from the research areas Cognitive Assistants, led by Prof. Dr. Antonio Krüger, and Multilinguality and Language Technology, led by Prof. Josef van Genabith, investigated how translation environments can support multimodal input and take into account cognitive aspects of post-editing. They also addressed the question of how automatic post-editing helps to avoid recurring errors.
    The team created a translation environment through a user-centered design process. The environment allows text to be crossed out or added by hand, words to be reordered by dragging and dropping, or voice commands to be used for editing.
    An evaluation with professional translators shows that these interaction modalities are good extensions to mouse & keyboard, with pen and touch input proving suitable for deletion and reordering tasks, while voice commands and multimodal combinations of select & speak work well for substitutions and insertions.
    However, post-editing also changes the cognitive dimension of translation. It requires a sense of the sentence in the original language and the error-prone output of the machine translation, of the surrounding context, including the readership and its cultural background. Robust approaches to automatically estimate this altered cognitive load (CL) during post-editing will enable a better understanding of whether and when machine translation tends to help or hinder the work process.
    Therefore, the project team developed a sensing framework that uses a wide range of physiological and behavioral data to estimate perceived cognitive load and tested it in several studies. They demonstrated that multimodal measures of eye-, heart-, and skin-based data can be used to adapt translation environments to cognitive load.
    Not only do actual errors occur during machine translation, the MT sometimes makes the same lexical or stylistic choices over and over again, with which the translator may disagree. Similar modifications are then required throughout the text. The researchers have thus investigated various deep-learning architectures for automatic post-editing (APE) that can adapt the output of each black-box MT system to a particular domain or style. Rather than learning to translate, APE systems learn from recurring human corrections and apply them to machine translation proposals for new text.
    The international visibility of the scientific results achieved in the project is documented by outstanding publications, e.g., at the Conference on Human Factors in Computing Systems (CHI), the Annual Meeting of the Association for Computational Linguistics (ACL), the Conference on Computational Linguistics (COLING) or in the Machine Translation Journal.
    The MMPE project is now available as open source on Github.


    Wissenschaftliche Ansprechpartner:

    Nico Herbig
    Research Department Cognitive Assistants
    E-Mail: nico.herbig@dfki.de
    Phone.: +49 681 85775 5368


    Weitere Informationen:

    https://mmpe.dfki.de
    https://github.com/NicoHerbig/MMPE


    Bilder

    Advanced interaction modalities support post-editing.
    Advanced interaction modalities support post-editing.

    DFKI


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Informationstechnik, Kulturwissenschaften, Sprache / Literatur
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).