idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.02.2021 20:00

Wie entstehen Hangrutschungen auf dem Mars?

Alexandra Frey Öffentlichkeitsarbeit
Universität Wien

    Analog-Untersuchungen auf der Erde liefern neue Erkenntnisse
    Die Beschaffenheit der Marsoberfläche ist Gegenstand von Untersuchungen, die sich vor Ort nicht immer einfach gestalten: Analog-Untersuchungen in Regionen auf der Erde, die den Bedingungen auf dem Mars nahekommen, lassen aber neue Schlüsse zu. Ein internationales Forschungsteam mit Beteiligung von Christian Köberl, Professor für Planetare Geologie und Impaktforschung an der Universität Wien, hat so auf der Basis von Untersuchungen in der Antarktis eine neue Hypothese über die Ursachen von Erdrutschen auf dem Mars entwickelt. Die Arbeit erscheint aktuell in "Science Advances".

    Um die Ursache von Hangrutschungen am Mars besser verstehen zu können, führte das Forschungsteam um Janice Bishop, Senior Research Scientist am SETI-Institut in Kalifornien, unter Beteiligung von Christian Köberl von der Universität Wien Analog-Untersuchungen auf der Erde durch. Die Sedimente in einer der kältesten und trockensten Regionen unseres Planeten, in den McMurdo Dry Valleys (Trockentälern) in der Antarktis, bieten sich als ideale Testumgebung an: Wie auf dem Mars ist die Oberfläche dort fast das ganze Jahr über trockenen Winden ausgesetzt.

    Unterirdische Salze und schmelzendes Eis
    Dabei zeigte sich, dass unter Permafrostbedingungen starke Salzkonzentrationen, zusammen mit der Ausbildung von dünnen Wasserfilmen, zur chemischen Verwitterung knapp unter der Oberfläche führen. Sulfate und Chlorsalze absorbieren in feinkörnigen Böden Wasser, dehnen sich aus, zerfließen, verursachen ein Absinken, bilden Krusten und zerstören die Oberflächen. So können sie auf diesen instabilen Oberflächen letztendlich Erdrutsche erzeugen.

    "Das Vorhandensein erhöhter Konzentrationen von Sulfaten und Chloriden wenige Zentimeter unterhalb der rauen Oberflächenlandschaft im Wright Valley lässt darauf schließen, dass diese wasserbezogenen mineralogischen Assoziationen und damit verbundenen Prozesse auch auf dem Mars existieren und dort für Erdrutsche verantwortlich sein könnten", so Christian Köberl.

    "Unser Team geht davon aus, dass das Schmelzen von kleinen Eiskörnern im oberflächennahen Bodenbereich Änderungen an der Oberfläche verursacht, die sie anfällig für Staubstürme und Wind machen. Die dünnen Schichten aus schmelzendem Eis sind auf die Wechselwirkung zwischen unterirdischem Wassereis, Chlorsalzen und Sulfaten zurückzuführen; diese erzeugen eine Art flüssigkeitsähnlichen Schlamm, der die beobachteten Rutschungen auslöst" so der Forscher.

    Analoge Geländeuntersuchungen
    Untersuchungen auf der Erde wie in den Trockentälern der Antarktis, im Toten Meer in Israel und im Salar de Pajonales in der Atacama-Wüste haben gezeigt, dass Salze, wenn sie mit Gips oder Wasser im Untergrund interagieren, Störungen an der Oberfläche bis hin zu Kollapserscheinungen und Erdrutschungen verursachen. Die neue Theorie hilft nicht nur bei der Erklärung der geologischen und chemischen Prozesse auf dem Mars, sondern legt auch nahe, dass die Marsumgebung weiterhin dynamisch ist. Der Planet entwickelt sich also noch weiter und ist aktiv – eine wichtige Erkenntnis, die auch Auswirkungen auf die Astrobiologie und die zukünftige menschliche Erforschung des Roten Planeten hat.

    "Weiters ist das Potenzial für dünne Wasserfilme unter der Marsoberfläche in salzigen Permafrostgebieten auch für die Erforschung einer Bewohnbarkeit des Mars von Interesse. Diese Erkenntnisse sind außerdem ein wichtiges Beispiel dafür, dass man geologische Untersuchungen auf der Erde auf andere erdähnliche Planeten anwenden kann, und umgekehrt. Geologische Prozesse finden in ähnlicher Weise auf den verschiedensten Körpern unseres Sonnensystems statt", so Köberl.

    Publikation in "Science Advances":
    J. L. Bishop et. al. Martian subsurface cryosalt expansion and collapse as trigger for landslides. Science Advances (2021) DOI: 10.1126/sciadv.abe4459


    Wissenschaftliche Ansprechpartner:

    Univ.-Prof. Dr. Christian Köberl
    Department für Lithosphärenforschung
    Universität Wien
    1090 - Wien, Althanstraße 14
    T+43-1-4277-53110
    christian.koeberl@univie.ac.at


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Geowissenschaften, Physik / Astronomie
    überregional
    Forschungs- / Wissenstransfer
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).