idw - Informationsdienst
Wissenschaft
Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have designed a framework that allows scientists to observe interactions between light and electrons using a traditional scanning electron microscope. The procedure is considerably cheaper than the technology that has been used to date, and also enables a wider range of experiments. The researchers have published their findings in the prestigious journal Physical Review Letters.
The quantum computer is just one example of how important an understanding of the fundamental processes underlying interactions between photons and electrons is. Combined with ultra-short laser pulses, it is possible to measure how photons change the energy and speed of electrons. This photon-induced electron microscopy (PINEM) has until now relied entirely on transmission electron microscopes (TEM). Although these have the resolution to pinpoint individual atoms, they are considerably more expensive than scanning electron microscopes (SEM), however, and their sample chamber is extremely small, only a few cubic millimeters in size.
Measuring differences down to a only a few hundred thousandths of a whole
Researchers at Prof. Dr. Peter Hommelhoff’s Chair of Laser Physics have now succeeded in modifying a traditional SEM to conduct PINEM experiments. They designed a special spectrometer based on magnetic forces which is integrated directly into the microscope. The underlying principle is that the magnetic field diverts electrons to a greater or lesser extent depending on their speed. Using a detector that transforms electron collisions into light, an accurate reading of this deviation is given. The method allows researchers to measure even the smallest changes in energy, up to differences of merely several hundred thousandths of the original value – enough to differentiate the contribution of a single light energy quanta - a photon.
A wider spectrum of experiments possible in the future
The Erlangen physicists’ discovery is pioneering in more ways than one. From a financial point of view, being able to research photon-electron interactions without using TEM, that cost several million euros, could make research more accessible. Furthermore, as the chamber of an SEM generally has a volume of up to 20 cubic centimeters, a much wider range of experiments is now possible, as additional optical and electronic components such as lenses, prisms and mirrors can be placed directly next to the samples. The researchers expect that in few years’ time, the entire field of microscopic quantum experiments will shift from TEM to SEM.
Further information:
Dr. Roy Shiloh
Chair of Laser Physics
roy.shiloh@fau.de
doi: „Quantum-coherent light-electron interaction in a scanning electron microscope“, Physical Review Letters (Vol. 128, No. 23): https://link.aps.org/doi/10.1103/PhysRevLett.128.235301
Merkmale dieser Pressemitteilung:
Journalisten
Physik / Astronomie
überregional
Forschungsergebnisse
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).