idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
30.08.2023 10:44

Ein einzelnes Ion als Thermometer

Dipl.-Journ. Erika Schow Presse- und Öffentlichkeitsarbeit
Physikalisch-Technische Bundesanstalt (PTB)

    Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren

    Optische Atomuhren gelten als die Atomuhren der Zukunft. Sie „ticken“ bereits, aber noch ist die Einheit Sekunde durch Cäsium-Atomuhren definiert. Bei ihnen werden Cäsium-Atome durch Mikrowellenstrahlung angeregt, die Atome oder Ionen bei optischen Uhren dagegen durch optische Strahlung. Die häufigeren Schwingungen pro Zeiteinheit von Licht im Vergleich zur Mikrowelle erlauben eine Bestimmung der Frequenz dieser Atomuhren mit weit höherer Genauigkeit. Forschenden der Physikalisch-Technischen Bundesanstalt (PTB) ist es jetzt gelungen, einen entscheidenden Einflussfaktor auf diese Referenzfrequenz, die Temperatur der Umgebung, genau zu bestimmen. Das neue Verfahren beruht darauf, dass bereits kleinste Frequenzverschiebungen direkt mit der Temperatur korreliert sind. Dazu verglichen die Forscherinnen und Forscher zwei optische Atomuhren miteinander und konnten die Frequenz des Referenzübergangs von Strontium-Ionen mit dreifach höherer Genauigkeit bestimmen. Diese Messung ebnet den Weg zu einer zukünftigen Neudefinition der Sekunde. Die Ergebnisse der Untersuchung sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

    Optische Atomuhren beruhen auf Elektronenübergängen in Atomen oder Ionen. Solche Übergänge heißen auch Quantensprünge, weil dabei ein Elektron von einem Energieniveau auf ein anderes springt. Die Frequenz der Strahlung, die bei einem solchen Übergang entsteht, ist eine Naturkonstante und lässt sich höchst genau messen. Entscheidend ist dabei, dass die Übergangsfrequenz entweder nicht gestört wird oder dass etwaige kleine Verschiebungen der Frequenz mit hoher Genauigkeit gemessen und dadurch korrigiert werden. Eine wichtige Ursache für solche Verschiebungen ist die Wärmestrahlung, die von allen Körpern ausgeht, deren Temperatur sich nicht am absoluten Nullpunkt befindet. Eine besonders kritische Quelle von Wärmestrahlung bei optischen Uhren ist die Ionenfalle, die die Ionen für die Interaktion mit dem Laser an einer festen Stelle hält. Um das thermische Feld, das Ionen in einer Hochfrequenzfalle stört, zu bestimmen, basierten bisherige Arbeiten auf aufwendigen Computersimulationen in Kombination mit Präzisions-Temperaturmessungen. Bei dem von der PTB neu entwickelten Verfahren wird stattdessen das gefangene Ion selbst verwendet, um das thermische Feld genau zu charakterisieren. Dazu verglichen die Forschenden den Referenzübergang für verschiedene Betriebsmodi mit einer unabhängigen optischen Uhr.

    Da der Temperaturanstieg in der Umgebung des Ions auf elektrische Verluste zurückzuführen ist, ermöglicht der Betrieb bei unterschiedlichen elektrischen Leistungen eine Extrapolation auf einen Temperaturanstieg von Null Kelvin. Die Forschenden haben dieses einfache Konzept erfolgreich demonstriert und eine auf 88Sr+-Ionen basierende Uhr mit einer auf 171Yb+-Ionen basierenden Uhr auf 17 Stellen genau verglichen. Ihr Ergebnis verbessert nicht nur die Kenntnis der 88Sr+-Uhrenfrequenz um einen Faktor 3, sondern hilft auch bei der Bewertung früherer inkonsistenter Bestimmungen dieser Größe. Solche Messungen sind von besonderer Bedeutung, da sie internationale Übereinstimmung und einen kontinuierlichen Übergang bei einer künftigen Neudefinition der Sekunde unter Verwendung eines optischen Referenzübergangs sicherstellen.
    (es/ptb)

    Bildunterschrift:
    Aufbau der optischen Uhr mit Strontium-Ionen: Über Spiegel wird Laserlicht in eine Vakuumkammer geführt, in der es mit gespeicherten Ionen wechselwirkt. Das Ion schwingt dadurch zwischen zwei Zuständen mit einer festen Frequenz, die in geringem Maße von der Temperatur beeinflusst wird. (Foto: PTB)


    Wissenschaftliche Ansprechpartner:

    Dr. Nils Huntemann, Leiter der Arbeitsgruppe 4.43 „Optische Uhren mit gespeicherten Ionen“, Telefon: (0531)592-4430, E-Mail: nils.huntemann@ptb.de


    Originalpublikation:

    M. Steinel, H. Shao, M. Filzinger, B. Lipphardt, M. Brinkmann, A. Didier, T. E. Mehlstäubler, T. Lindvall, E. Peik, N. Huntemann: Evaluation of a 88-Sr+ optical clock with a direct measurement of the blackbody radiation shift and determination of the clock frequency. Phys. Rev. Lett. 131, 083002 (2023)


    Bilder

    Aufbau der optischen Uhr mit Strontium-Ionen
    Aufbau der optischen Uhr mit Strontium-Ionen

    (PTB)


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).