idw - Informationsdienst
Wissenschaft
Researchers at the Technical University of Munich (TUM) have succeeded in generating precise 3D reconstructions of objects using images from only two camera perspectives. Their method works even with images captured in their natural surroundings. Previously, such reconstructions were possible only with hundreds of perspectives or under laboratory conditions. Camera-based reconstructions are used in autonomous driving or when preserving historical monuments.
In recent years, neural methods have become widespread in camera-based reconstructions. In most cases, however, hundreds of camera perspectives are needed. Meanwhile, conventional photometric methods exist which can compute highly precise reconstructions even from objects with textureless surfaces. However, these typically work only under controlled lab conditions.
More precise reconstructions despite small numbers of data points
Daniel Cremers, professor of Computer Vision and Artificial Intelligence at TUM and leader of the Munich Center for Machine Learning (MCML) and a director of the Munich Data Science Institute (MDSI) has developed a method together with his team that utilizes the two approaches. It combines a neural network of the surface with a precise model of the illumination process that considers the light absorption and the distance between the object and the light source. It combines a neural network of the surface with a precise model of the illumination process that considers the light absorption and the distance between the object and the light source. The brightness in the images is used to determine the angle and distance of the surface relative to the light source. “That enables us to model the objects with much greater precision than existing processes. We can use the natural surroundings and can reconstruct relatively textureless objects for our reconstructions,” says Daniel Cremers.
Applications in autonomous driving and preservation of historical artefacts
The method can be used to preserve historical monuments or digitize museum exhibits. If these are destroyed or decay over time, photographic images can be used to reconstruct the originals and create authentic replicas. The team of Prof. Cremers also develops neural camera-based reconstruction methods for autonomous driving, where a camera films the vehicle's surroundings. The autonomous car can model its surroundings in real-time, develop a three-dimensional representation of the scene, and use it to make decisions. The process is based on neural networks that predict 3D point clouds for individual video images that are then merged into a large-scale model of the roads travelled.
More information:
- Daniel Cremers is a professor of computer vision and artificial intelligence. He is also a director of the Munich Data Science Institute (MDSI) and the Munich Center for Machine Learning (MCML). His research is focused mainly on computer vision and machine learning with the goal of developing algorithms for precise 3D reconstructions and image analysis.
- The study will be presented at the Conference on Computer Vision and Pattern Recognition (CVPR) in Seattle (USA) from June 17th to 21st, 2024. The CVPR is the largest and most important event in its field.
Daniel Cremers
Technical University of Munich
Professorship for Computer Vision and Artificial Intelligence
cremers@tum.de
Mohammed Brahimi, Bjoern Haefner, Zhenzhang Ye, Bastian Goldluecke, Daniel Cremers. Sparse Views, Near Light: A Practical Paradigm for Uncalibrated Point-light Photometric Stereo. CVPR conference 2024.
https://www.tum.de/en/news-and-events/all-news/press-releases/details/from-two-i...
Merkmale dieser Pressemitteilung:
Journalisten
Informationstechnik
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).