idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
08.07.2024 13:48

Wie sich Blutgefäße im Gewebe unterhalten

Anne Reichel Stabsstelle Hochschulkommunikation
Philipps-Universität Marburg

    Marburger Forschende entschlüsseln Kommunikation beim Gefäßwachstum

    Die Marburger Forschenden um Julian Malchow und Prof. Dr. Christian Helker vom Fachbereich Biologie der Philipps-Universität Marburg haben einen neuen Signalweg entdeckt, mit dessen Hilfe Nervenzellen im zentralen Nervensystem mit Blutgefäßen kommunizieren. Diese Kommunikation ist entscheidend für gesundes Gewebe- und Organwachstum. Die Ergebnisse sind auch außerhalb des zentralen Nervensystems interessant für Therapien – nach Herzinfarkten oder bei Krebserkrankungen –, bei denen aufzubauende oder zu eliminierende Gefäße entscheidend sind. Die Forschenden berichten über ihre Experimente im Fachmagazin „Science Advances“.
    „Die Forschung zeigt, dass Zellen nicht isoliert voneinander zu betrachten sind, sondern in komplexen Netzwerken im Gewebe miteinander kommunizieren. In diesem Fall wird das Wachstum von Blutgefäßen entscheidend von der Kommunikation mit den Nervenzellen geprägt. Ergebnisse und Publikation unterstreichen die herausragende Forschungstätigkeit in unserem universitären Profilbereich ‚Geist, Gehirn und Verhalten‘“, erläutert Prof. Dr. Gert Bange, Vizepräsident für Forschung der Uni Marburg.
    Wissenschaftler*innen haben die Vorstellung längst widerlegt, wonach Blutgefäße schlicht Röhren gleichen, die Sauerstoff und Nährstoffe transportieren. Vielmehr sind sie Teil eines umfangreichen Signalnetzwerks im Gewebe und zwischen Organen. In ihren Experimenten haben die Forschenden insbesondere untersucht, wie Nervenzellen den Signalstoff Apelin produzieren, der das Wachstum von Blutgefäßen steuert. Die Gefäße sprießen aus und wandern dann Richtung Nervenzelle. Damit das gelingt, verfügen die Gefäßzellen über bestimmte Rezeptoren auf ihrer Zellmembran. Diese für Apelin spezifischen Rezeptoren gehören in eine große Rezeptorenklasse namens G-Protein-gekoppelte Rezeptoren (GPCR), die zur erfolgreichsten Klasse medikamentöser Ziele im menschlichen Genom zählen und in der Medizinforschung gut bekannt sind.
    Als Modellsystem betrachten die Forschenden Larven des Zebrafischs. „Die eignen sich gut für die Forschung an Organen und Zellen, da sich die Organe schnell entwickeln und viele Entwicklungsschritte dem Menschen ähnlich, wenn nicht gar identisch sind“, sagt Christian Helker. Unter dem Laserscanning-Mikroskop können die Forschenden das Wachstum von Gefäßen ins sogenannte Neuralrohr (das sich zum Zentralen Nervensystem entwickelt) en detail beobachten. „Wir sehen live, wie die Signale in den Zellen eingeschaltet werden und die Zelle auf das Signal reagiert“, sagt Helker. Dazu müssen die Forschenden bestimmte Bestandteile in den Zellen genetisch und farblich markieren. Sie sprechen von sogenannten Biosensoren, die dann rot, grün oder gelb aufleuchten, wann immer ein Signalweg in der Zelle angeschaltet wird. „Wir können am Monitor verfolgen, wie die Gefäße in das Neuralrohr einwandern und welche Signalwege dafür erforderlich sind“, sagt Helker.
    Mit gentechnischen Methoden können die Biologen die Signalwege manipulieren. Ist beispielsweise ein Rezeptor defekt oder blockiert, so kommt das Wachstum ins Stocken. „Wenn ein Schritt fehlt, geht alles schief“, kommentiert Christian Helker. Für die therapeutische Anwendung bedeutet dies, dass sich über das Verständnis der Signalwege des Gefäß-Organ-Wachstums Erkrankungen womöglich beeinflussen lassen. Ist Gewebe etwa nach einem Herzinfarkt geschädigt, so könnte medikamentös der Neuaufbau unterstützt werden. Im sogenannten Tissue Engineering, bei dem Ersatzgewebe oder -organe im Labor gezüchtet werden, wäre das Einleiten und Steuern von Gefäßwachstum ein wichtiger Schritt nach vorn. Andererseits ist es bei der Tumortherapie wünschenswert, die Gefäßbildung zum Tumor zu stören, etwa indem Signalkaskaden unterbunden werden. „Das grundlegende Verständnis der Kommunikation zwischen Gefäßen und Organen gibt uns viele Ansatzpunkte und Ideen für therapeutische Interventionen“, erklärt Christian Helker.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Christian Helker
    Fachbereich Biologie
    Philipps-Universität Marburg
    Tel.: 06421 28-23457
    E-Mail: christian.helker@biologie.uni-marburg.de


    Originalpublikation:

    Julian Malchow, Christian Helker et al., Science Advances, DOI: 10.1126/sciadv.adk1174


    Bilder

    Prof. Dr. Christian Helker und seine Arbeitsgruppe untersuchen im Fachbereich Biologie die Entwicklungsschritte des Gefäßwachstums
    Prof. Dr. Christian Helker und seine Arbeitsgruppe untersuchen im Fachbereich Biologie die Entwicklu ...
    Christian Stein
    Christian Stein / Universität Marburg


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).