idw - Informationsdienst
Wissenschaft
Das leichteste aller Elemente, der Wasserstoff, ist wegen seiner vielversprechenden Rolle als nachhaltiger Rohstoff bei der Energiewende sehr gefragt. Einem Team der Universität Leipzig und der Technischen Universität Dresden ist im Rahmen der Forschungsarbeiten des Graduiertenkollegs 1,2,3H ein entscheidender Fortschritt bei der effektiven und zugleich kostengünstigen Bereitstellung von Isotopen gelungen. Darunter versteht man die drei Formen, in denen Wasserstoff in der Natur auftritt – als Protium, Deuterium oder Tritium.
Ihrem Traum, Wasserstoffisotope auch bei Raumtemperatur kostengünstig zu trennen, ist das internationale Forschungsteam damit einen großen Schritt nähergekommen. Gerade wurden ihre neuen Erkenntnisse in dem renommierten Fachjournal „Chemical Science“ veröffentlicht.
Protium ist die Form, die wir umgangssprachlich „Wasserstoff“ nennen. Deuterium, sogenannter „schwerer“ Wasserstoff, spielt etwa bei der Entwicklung stabilerer und wirksamerer Arzneistoffe eine immer bedeutendere Rolle. Ein Gemisch aus Deuterium und Tritium, dem „superschweren“ Wasserstoff, dient als Brennstoff bei der nachhaltigen Energieerzeugung der Zukunft, der sogenannten Kernfusion. Eines der ungelösten Probleme der Wasserstoffforschung bleibt weiterhin die effektive, aber auch kostengünstige Bereitstellung dieser Isotope in hochreiner Form, da diese sehr ähnliche physikalische Eigenschaften haben. Die aktuell angewendeten Isotopen-Trennungsverfahren sind wenig effizient und verbrauchen sehr viel Energie.
„Seit knapp 15 Jahren war bekannt, dass poröse, metallorganische Gerüstverbindungen prinzipiell zur Reinigung und Trennung der Wasserstoffisotope genutzt werden können. Dies gelang bisher aber nur bei sehr tiefen Temperaturen, bei etwa minus 200 Grad Celsius – Bedingungen also, die industriell nur sehr kostspielig umgesetzt werden können“, erklärt Prof. Dr. Knut Asmis vom Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie der Universität Leipzig und Sprecher des Graduiertenkollegs. Der Trennungsmechanismus basiere dabei auf der stark bevorzugten Adsorption eines der vorhandenen Isotope an einem der freien Metallzentren im porösen Festkörper. Als Adsorption bezeichnet man einen Prozess, bei dem Atome, Ionen oder Moleküle aus einem Gas oder einer Flüssigkeit an einer festen, oft porösen Oberfläche haften bleiben.
Den Doktorand:innen des Graduiertenkollegs 1,2,3H, Elvira Dongmo, Shabnam Haque und Florian Kreuter, die jeweils Mitglied in einer der Forschungsgruppen von Prof. Dr. Thomas Heine (TU Dresden), Prof. Dr. Knut Asmis und Prof. Dr. Ralf Tonner-Zech (beide Universität Leipzig) sind, gelang nun ein tieferer Einblick in den Einfluss der Gerüstumgebung auf die Bindungsselektivität. Damit ist die Frage gemeint, wieso eines der Isotope eher haften bleibt als das andere. Dies konnte in der vorliegenden Studie durch ein synergetisches Zusammenspiel zwischen modernster Spektroskopie, quantenchemischen Berechnungen und chemischer Bindungsanalyse an einem Modellsystem im Detail entschlüsselt werden. „Damit konnten wir erstmals zeigen, welchen Einfluss die einzelnen Atome der Gerüstverbindungen bei der Adsorption haben. Wir können sie nun gezielt optimieren, um Materialien mit hoher Selektivität bei Raumtemperatur zu erreichen“, betont Heine.
Das Graduiertenkolleg 1,2,3H, von der Deutschen Forschungsgemeinschaft (DFG) mit 5,4 Millionen Euro für 4,5 Jahre gefördert, bildet seit Oktober 2021 über 20 Doktorand:innen aus. Es vereint die Expertise der Universität Leipzig, der TU Dresden, des Helmholtz-Zentrums Dresden-Rossendorf und des Leibniz-Instituts für Oberflächenmodifizierung, um durch eine gebündelte Förderung der Grundlagenforschung und Ausbildung auf dem Gebiet der Wasserstoffisotope neuartige Materialien, wirksamere Medikamente und sensiblere Nachweismethoden zu entwickeln. Die zweite Kohorte von etwa 15 bis 20 Doktoranden beginnt am 1. Oktober 2024 ihr dreijähriges strukturiertes Promotionsprogramm.
Prof. Dr. Knut Asmis
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
Telefon: +49 341 97-36500
E-Mail: knut.asmis@uni-leipzig.de
Chemical Science: "Direct evidence for ligand-enhanced activity of Cu(I) sites", DOI: 10.1039/D4SC04582C
https://pubs.rsc.org/en/content/articlepdf/2024/SC/D4SC04582C
https://www.uni-leipzig.de/en/123h
Künstlerische Darstellung der bevorzugten Bindung von schwerem Wasserstoff (blau) gegenüber leichtem ...
Abbildung: Universität Leipzig
Universität Leipzig
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Chemie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).