idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.11.2024 19:00

Bee gene specifies collective behaviour

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Bee research: publication in Science Advances

    Researchers at Heinrich Heine University Düsseldorf (HHU) are collaborating with colleagues from Frankfurt/Main, Oxford and Würzburg to investigate how the complex, cooperative behaviour of honey bees (Apis mellifera) is genetically programmed so that it can be passed on to subsequent generations. As they explain in the scientific journal Science Advances, they found an answer in what is known as the doublesex gene (dsx).

    Behavioural interactions between organisms are fundamental and often inherited. Every human being and every animal interacts with other individuals in its social group in one way or another through its behaviour. In the animal kingdom, this has considerable advantages in collective foraging for food, defence against predators and the rearing of offspring.

    In some animals, such as honeybees, the social behaviour bonds are so strong that the individual members form a tight-knit society that function collectively as a single “superorganism”. Through their individual behaviour, thousands of worker bees protect the entire colony, feed it and care for the brood.

    Professor Dr Martin Beye, who heads the Institute of Evolutionary Genetics at HHU and is the corresponding author of the study that has now been published in Science Advances, emphasises: “The behavioural repertoire of the individual bees and their function in the colony are not learned, but rather inherited. Until now, it was not known how such complex behaviours were genetically encoded.”

    Together with colleagues from the universities in Frankfurt/Main, Oxford and Würzburg, the team of researchers at HHU led by Beye and first author Dr Vivien Sommer has now discovered that a special gene known as dsx specifies worker bee-specific behaviour.

    Sommer: “The gene programmes whether a worker bee takes up a task in the colony and for how long. This includes collective tasks such as caring for the larvae or foraging for food and social exchanges on food sources, for example.”

    The biologists used the CRISPR/Cas9 genetic scissors in their investigations to modify or switch off the dsx gene in selected bees. They attached a QR code to the manipulated bees, then monitored their behaviour in the hive with cameras. The resulting video sequences were analysed with the support of artificial intelligence to determine the bees’ individual behavioural patterns.

    Sommer: “Our central question was whether and how the inherited behavioural patterns changed as a result of the gene modification. Such changes must be reflected in the nervous system of the worker bees where the specific behaviour is controlled.”

    The researchers introduced green fluorescent protein (GFP) into the dsx sequence so that GFP was produced together with the dsx protein. The neuronal circuits could then be viewed using fluorescence microscopy, in both the unmodified bees and in those with genetic modifications. “We were able to use these tools to see exactly which neural pathways the dsx gene creates in the brain and how this gene in turn specifies the inherited behavioural patterns of honeybees,” explains doctoral researcher Jana Seiler, who is also a co-author of the study.

    “Our findings indicate a fundamental genetic programme that determines the neuronal circuitry and behaviour of worker bees,” says Professor Dr Wolfgang Rössler from the Department of Behavioural Physiology and Sociobiology, who led the study at the University of Würzburg.

    In the next step, the researchers now want to move from the level of the individual honeybee to the bee colony superorganism. Alina Sturm, who is also a doctoral researcher at HHU and study co-author, adds: “We hope to find the link between individual programming and the coordinated behaviour of many individuals.”


    Originalpublikation:

    Vivien Sommer, Jana Seiler, Alina Sturm, Sven Köhnen, Anna Wagner, Christina Blut, Wolfgang Rössler, Stephen F. Goodwin, Bernd Grünewald, Martin Beye. Dedicated developmental programing for group-supporting behaviors in eusocial honeybees. Science Advances (2024).

    DOI: 10.1126/sciadv.adp3953


    Bilder

    Each honeybee is labelled with a QR code so that their individual behaviour can be tracked.
    Each honeybee is labelled with a QR code so that their individual behaviour can be tracked.

    HHU / Christoph Kawan

    The neuronal network in the bee’s brain appears in green.
    The neuronal network in the bee’s brain appears in green.

    HHU / Institute for Evolutionary Genetics


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Tier / Land / Forst
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).