idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.12.2024 13:16

Effizientere Autodesigns mit KI

Julia Rinner Corporate Communications Center
Technische Universität München

    Neue Fahrzeuge zu designen ist teuer und zeitaufwendig. Daher kommt es zwischen den Modell-Generationen in der Regel nur zu kleinen Veränderungen. Mit DriverAerNet++ haben Forschende der Technischen Universität München (TUM) und des Massachusetts Institute of Technology (MIT) nun den größten Open-Source-Datensatz für Autoaerodynamik entwickelt. Über 8.000 Modelle, die die gängigsten Fahrzeugtypen repräsentieren, ermöglichen es, mithilfe von Künstlicher Intelligenz (KI) effizientere Designs zu entwerfen. Das Ziel sind kostengünstigere Entwicklungsprozesse, kraftstoffsparende Autos und Fortschritte bei Elektrofahrzeugen.

    Automobilhersteller investieren oft mehrere Jahre in das Design eines Fahrzeugs. Dabei werden zunächst 3D-Modelle simuliert, bevor die vielversprechendsten Entwürfe im Windkanal getestet werden. Die Details und Spezifikationen dieser Tests, einschließlich der Aerodynamik eines bestimmten Designs, werden in der Regel nicht veröffentlicht. Fortschritte in Bereichen wie Kraftstoffeffizienz oder Reichweite von Elektrofahrzeugen sind daher oft langsam und auf die jeweiligen Unternehmen beschränkt.

    Autodesigns mithilfe generativer KI

    Als Ausgangspunkt für DrivAerNet++ nutzten die Forschenden 3D-Modelle aus dem Jahr 2014, die von Audi und BMW bereitgestellt wurden und unterschiedliche Karosserieformen von Autos repräsentieren. Zusätzlich veränderten sie bei diesen Modellen 26 Parameter wie Länge, Unterbodenmerkmale und Windschutzscheibenneigung systematisch. Das Team führte außerdem komplexe Strömungssimulationen durch, um zu berechnen, wie groß der Luftwiderstand der einzelnen generierten Autodesigns ist.

    Die Forschenden verfolgen damit das Ziel, DriverAerNet++ als Trainingsdatensatz für generative KI einzusetzen. So können riesige Datenmengen in Sekunden analysiert und neuartige Designs generiert werden. Zwar existieren solche Tools, doch die dafür erforderlichen Daten waren bisher nicht frei zugänglich.

    Kraftstoffeffizientere Autos und Fortschritte bei Elektroautos

    Angela Dai, Professorin für 3D Artificial Intelligence an der TUM, sagt: „Unser Datensatz kann als umfangreiche Bibliothek genutzt werden, um mithilfe von KI-Modellen in kurzer Zeit neue Designs zu generieren, die zukünftig zu kraftstoffeffizienteren Autos oder Elektrofahrzeugen mit längerer Reichweite führen sollen.“

    Mohamed Elrefaie, Erstautor der Studie sagt: „Dieser Datensatz legt den Grundstein für die nächste Generation von KI-Anwendungen im Autobau, fördert effiziente Designprozesse, senkt Kosten in der Forschung und Entwicklung und treibt Fortschritte in Richtung einer nachhaltigeren Automobilzukunft voran.“


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Angela Dai
    Technische Universität München
    Professur für 3D Artifical Intelligence
    angela.dai@tum.de


    Originalpublikation:

    M. Elrefaie, F. Morar, A. Dai, and F. Ahmed. DrivAerNet++: A large-scale multimodal car dataset with computational fluid dynamics simulations and deep learning benchmarks. In Thirty-eigth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.


    Weitere Informationen:

    https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/effizient...


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Informationstechnik, Maschinenbau
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).