idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.03.2025 14:48

New Fabrication Method Brings Topological Quantum Computing a Step Closer to Reality

Eva Schissler Kommunikation und Marketing
Universität zu Köln

    Physicists at the University of Cologne have revealed a key superconducting effect in topological insulator nanowires. Their findings bring topological insulators closer to serving as the foundation for stable, next-generation quantum bits (qubits) / publication in ‘Nature Physics’

    Physicists at the University of Cologne have taken an important step forward in the pursuit of topological quantum computing by demonstrating the first-ever observation of Crossed Andreev Reflection (CAR) in topological insulator (TI) nanowires. This finding, published under the title ‘Long-range crossed Andreev reflection in topological insulator nanowires proximitized by a superconductor’ in Nature Physics, deepens our understanding of superconducting effects in these materials, which is essential for realizing robust quantum bits (qubits) based on Majorana zero-modes in the TI platform — a major goal of the Cluster of Excellence ‘Matter and Light for Quantum Computing’ (ML4Q).

    Quantum computing promises to revolutionize information processing, but current qubit technologies struggle with maintaining stability and error correction. One of the most promising approaches to overcoming these limitations is the use of topological superconductors, which can host special quantum states called Majorana zero-modes. These exotic states have been theoretically predicted to provide an inherently stable foundation for quantum computation, immune to many common sources of error. The experimental observation of these states, however, remains controversial despite many optimistic claims.

    In this latest study, Junya Feng, postdoctoral fellow in the Topological Matter Laboratory Cologne (TMLC) led by Professor Dr Yoichi Ando, explored topological insulator (TI) nanowires — materials that, when paired with a conventional superconductor, are predicted to support topological superconductivity more easily than other materials. The team successfully observed Crossed Andreev Reflection (CAR), a rare quantum effect where an electron injected at one terminal of a nanowire ‘pairs up’ with another distant electron, forming a superconducting Cooper pair. This nonlocal effect is a key signature of the long-range superconducting correlations that are a prerequisite for Majorana-based qubits.

    “This is the first study to explore how Andreev physics works in topological insulator nanowires when they are coupled to superconductors. Understanding this is crucial for the robust creation of Majorana zero-modes in the TI platform,” said Professor Ando. “This breakthrough was enabled by Junya’s innovative fabrication approach: etching high-quality nanowires from exfoliated topological insulator flakes. This method produced much cleaner structures than previous techniques, making them ideal for quantum experiments. Thanks to this progress, we are now performing experiments that were previously only possible with conventional semiconductor nanowires. We have also decided to focus entirely on this new fabrication method, as it has led to a series of exciting results. With these advances, the ML4Q Cluster is moving a step closer to making a topological qubit a reality.”

    The ability to reliably induce and control superconducting correlations in TI nanowires is a crucial step toward engineering Majorana-based qubits based on the TI platform. Next steps will focus on directly observing and controlling Majorana zero-modes in these systems — an essential milestone toward fault-tolerant quantum computing.

    To achieve these results, the Cologne group collaborated with theorists at the University of Basel who helped understand the peculiar way how the Andreev physics work in TI nanowires.

    Matter and Light for Quantum Computing (ML4Q) was established as a Cluster of Excellence in 2019 within the Excellence Strategy of the German federal and state governments. In ML4Q, scientists from the universities of Cologne, Aachen and Bonn as well as Forschungszentrum Jülich come together to spearhead quantum computing research. The consortium brings together scientists with backgrounds in the key disciplines of quantum computation: condensed matter physics, quantum optics, quantum devices and quantum information. It aims to push the frontiers of the field by developing novel forms of quantum hard- and software: from fundamental research on quantum matter over quantum information devices to operation protocols and software. Its research focus is on pioneering technologies that are at an early development stage today, but may become game changers tomorrow.


    Wissenschaftliche Ansprechpartner:

    Professor Dr Yoichi Ando
    Institute of Experimental Physics of the University of Cologne
    +49 221 470 3570
    ando@ph2.uni-koeln.de


    Originalpublikation:

    DOI: 10.1038/s41567-025-02806-y
    https://www.nature.com/articles/s41567-025-02806-y


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).