Internationales Forscherteam beschreibt 50 Jahre photonische künstliche Intelligenz / Publikation in "Nature"
In der aktuellen Ausgabe des Fachmagazins „Nature“ hat ein internationales Forscherteam aus den USA, Frankreich, Münster und der Schweiz seine Expertise auf den Gebieten der optischen neuronalen Netze, des optischen Lernens und des photonischen Rechnens zusammengetragen. Die Wissenschaftlerinnen und Wissenschaftler zeigen den Weg von bahnbrechenden optischen neuronalen Netzen und Realisierungen des optischen Rechnens der letzten 50 Jahre auf und beschreiben die Entwicklungen bis hin zu Anwendungen der photonischen künstlichen Intelligenz.
Das Team, zu dem die Physikerin Prof. Dr. Cornelia Denz vom Institut für Angewandte Physik der Westfälischen Wilhelms-Universität Münster (WWU) gehört, erörtert in diesem zur Reihe „Perspectives“ gehörenden Artikel vielversprechende Entwicklungen und Herausforderungen für zukünftige photonische künstliche Intelligenz und ihre Anwendungen der nächsten Generation in den Bereichen Wissensrepräsentation, Lernen, Planung und Wahrnehmung.
Künstliche Intelligenz – die von Maschinen demonstrierte Intelligenz – ist ein zentrales Thema in der heutigen Gesellschaft. Von autonom fahrenden Autos über strategische Spiel- und Optimierungssysteme bis hin zum Verstehen menschlicher Sprache haben sie alle gemein, dass sie als „intelligente Agenten“ agieren. Das bedeutet, dass sie ihre Umgebung wahrnehmen und Handlungen ausführen, die ihre Erfolgschancen oder die Chance erhöhen, ein bestimmtes Ziel zu erreichen.
Viele dieser Aufgaben erfordern zum Lernen oder zur Verarbeitung riesiger Datenmengen eine gleichzeitige, schnelle und energiesparende Ausführung. Die Optik spielt in diesem Zusammenhang eine wesentliche Rolle: Das optische Rechnen ist einerseits in der Lage, die Bedürfnisse der künstlichen Intelligenz zu erfüllen - andererseits bietet es zahlreiche Ansätze für bildbasierte und visuelle Umsetzungen der künstlichen Intelligenz. Besonders wenn es um das sogenannte tiefe Lernen (zu Englisch: deep learning) mit mehreren Schichten eines neuronalen Netzes der künstlichen Intelligenz geht, ist die Optik vorteilhaft, da sie auf natürliche Weise Millionen von Daten parallel verarbeitet. Die Bilderkennung und -filterung sowie die parallelisierte Matrix-Multiplikation machen die Optik und Photonik zu idealen Kandidaten für den Einsatz künstlicher Intelligenz.
So können zum Beispiel lineare optische Elemente als „Nebenprodukt“ der Licht-Materie-Wechselwirkung oder der Lichtausbreitung mit Lichtgeschwindigkeit Faltungen, Fourier-Transformationen, Zufallsprojektionen und viele andere Operationen ohne jeden Aufwand berechnen. „Da diese Operationen die grundlegenden Bausteine jeder tiefen neuronalen Netzwerkarchitektur sind, die die meisten modernen visuellen Rechenalgorithmen antreiben, birgt die Photonik ein enormes Transformationspotenzial für zukünftige Systeme der künstlichen Intelligenz. In den letzten 20 Jahren hat die Entwicklung optischer Komponenten zu einer räumlichen und zeitlichen Auflösung geführt, die visuelle Computeranwendungen mit Photonik wesentlich vielseitiger macht als ihre elektronischen Pendants“, erläutert Cornelia Denz.
Prof. Dr. Cornelia Denz
Institut für Angewandte Physik
Westfälische Wilhelms-Universität Münster
Mail: denz@uni-muenster.de
Telefon: 0251 8333517
Gordon Wetzstein, Aydogan Ozcan, Sylvain Gigan, Shanhui Fan, Dirk Englund, Marin Soljačić, Cornelia Denz, David A. B. Miller & Demetri Psaltis (2020). Inference in artificial intelligence with deep optics and photonics. Nature 588, 39-47. DOI: 10.1038/s41586-020-2973-6
Beispiel eines Systems künstlicher Intelligenz
Eileen Otte, AP, WWU
Merkmale dieser Pressemitteilung:
Journalisten
Physik / Astronomie
überregional
Forschungs- / Wissenstransfer, Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).