idw - Informationsdienst
Wissenschaft
Im Gegensatz zum lupenreinen Edelstein enthalten faserige Diamanten oft kleine Einschlüsse von Salzlauge. Sie verraten Forschern, unter welchen Bedingungen Diamanten tief im Erdmantel entstehen. Ein Forscherteam unter Beteiligung der Goethe-Universität hat das Rätsel gelöst, in dem sie die Situation unter extremem Druck und großer Hitze im Labor simulierte.
Diamanten sind Kristalle aus Kohlenstoff, die sich im tiefen Erdmantel unter den ältesten Kontinenten, den Kratonen, bilden. Durch explosive Vulkanausbrüche gelangen sie mit exotischen Magmen, den Kimberliten, an die Erdoberfläche. Aus vorherigen Studien war bereits bekannt, dass Diamanten Natrium- und Kalium-haltige
Fluide einschließen, jedoch war der Ursprung dieser Fluide unbekannt.
„Damit solche Einschlüsse entstehen können, müssen Teile der marinen Erdkruste und deren Sedimentauflage in einer sogenannten Subduktionszone unter die kratonischen Kontinente abtauchen. Diese Zonen liegen in Tiefen von über 110 Kilometern bei einem Druck von mehr als vier Gigapascal, also dem 40 Tausendfachen des atmosphärischen Drucks“, erklärt Michael Förster, der Erstautor der Studie, die in der Fachzeitschrift Science Advances erschienen ist. Das Abtauchen der Erdkruste muss rasch geschehen, so dass sich der Diamant gebildet hat, bevor das Sediment bei über 800 Grad Celsius zu schmelzen anfängt und mit dem kratonischen Mantel reagiert.
Für die Hochdruckexperimente im Labor schichteten die Wissenschaftler aus Sydney, Mainz und Frankfurt marines Sediment und Peridotit (Erdmantelgestein) in vier Millimeter kleine Kapseln und setzten sie unter Hochdruck und extreme Temperaturen. Bei Drücken von vier bis sechs Gigapascal - entsprechend Tiefen von 120 bis 180 Kilometern – entstanden aus der Reaktionen beider Schichten kleine Salzkristalle. Deren Kalium zu Natrium-Verhältnis entspricht genau dem der salzhaltigen Fluideinschlüsse in Diamanten. In Experimenten mit geringeren Drücken, die Tiefen von unter 110 Kilometern entsprechen, fehlen diese Salze. Stattdessen wird Kalium aus dem recycelten Sediment von Glimmer aufgenommen.
„Im Gegensatz zu vorherigen Modellen, bei denen der Ursprung der Salze dem Meerwasser zugeschrieben wurde, sind die Sedimente eine plausible Quelle für Kalium“, sagt der Mineraloge Prof. Horst Marschall von der Goethe-Universität, „denn im Meerwasser ist die Kaliumkonzentration zu niedrig, um die salinen Einschlüsse in Diamanten zu erklären.“ Als Nebenprodukt der Reaktion entstanden auch magnesiumreiche Karbonate, die wichtige Bestandteile der Kimberlite sind.
Prof. Horst Marschall, Institut für Geowissenschaften, Mineralogie, Fachbereich 11, Campus Riedberg, Tel.: (069) 798- 40124 , marschall@em.uni-frankfurt.de
Michael W. Förster, et al. Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds, in Science Advances, Vol.5 No. 5, DOI: DOI: 10.1126/sciadv.aau2620; https://advances.sciencemag.org/content/5/5/eaau2620
Prof. Horst Marschall vor einer der Hochdruckpressen im Institut für Geowissenschaften, mit denen di ...
H. Marschall, Goethe-Universität
None
Merkmale dieser Pressemitteilung:
Journalisten
Geowissenschaften
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).