idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
09.11.2020 07:16

New insights into the production and dissociation of atomic clusters

Jan Meßerschmidt Presse- und Informationsstelle
Universität Greifswald

    Atomic clusters are composed of several atoms of the same or very few different elements. Which conditions lead to the formation of atomic clusters? When and how do they fragment? These questions have been investigated by researchers belonging to the University of Greifswald’s Atomic and Molecular Physics Group using a multi-reflection time-of-flight mass spectrometer developed and built on site – an important tool for studying atomic properties. The device has now been used successfully to investigate atomic clusters, leading to several publications, most recently in the new open-access journal Physical Review Research (DOI: 10.1103/PhysRevResearch.2.043177).

    Atomic clusters are found between single atoms and solids. Their properties differ from both and depend on their size. Physical properties can change smoothly – and sometimes suddenly – with increasing numbers of atoms, which is a subject of ongoing research. Dr. Fischer has investigated the size dependence of properties of bismuth and indium clusters with novel techniques of multi-reflection time-of-flight mass spectrometry. The experiments constitute the first realisation of tandem multi-reflection time-of-flight mass spectrometry, in which two spectrometry stages are combined in sequence: First, the mass spectrometer is used to select clusters according to their size; then, reaction products are analysed following laser excitation.

    ‘In a first series of measurements, Dr. Fischer determined the dissociation behaviour of bismuth clusters as a function of the product size. He then ‘doped’ the clusters with lead, meaning a single lead atom was attached to the bismuth clusters. The interesting question was which bismuth fragments would retain the lead atom upon dissociation. Both steps, the cluster selection and reaction-product analysis, were performed with multi-reflection to attain a high mass-resolving power. In a subsequent experiment, Dr. Fischer studied the time-resolved dissociation of indium clusters to gain insight into the conditions of their production through the laser irradiation of a target surface. The details of cluster production are still subject of ongoing research,’ reports Prof. Dr. Lutz Schweikhard, head of the Atomic and Molecular Physics Group at the University of Greifswald.

    Mass spectrometry (MS) is a prevalent experimental technique, providing insight into the composition and bond structures of molecules and atomic clusters. In time-of-flight mass spectrometry (ToF MS), ions – charged atoms and molecules – are accelerated to identical kinetic energies through an electric field regardless of their mass. They are then sent, like cars on a racetrack, from the source towards a detector inside a vacuum chamber. Lighter ions arrive earlier than heavier ones, with their flight times also being influenced by their charge state. The detector registers the flight times of the ions of different masses to form a time-of-flight spectrum in which individual species can be identified. Longer flight paths between source and detector lead to larger differences in the flight times of different ions and, thus, better conditions to differentiate between species: The ‘mass resolving power’ increases with longer flight times.

    To allow ions to travel long distances even in a laboratory environment, in Greifswald’s setup, they are reflected back and forth several thousand times between ion-optical mirrors. This ‘multi-reflection’ (MR) is comparable to a game of ‘ion ping-pong’, increasing the length of their flight path from one metre to several kilometres and the mass resolving power to values of several hundred thousand. Additionally, the MR-ToF mass spectrometer can be used as an ion trap, making it possible to track the decay of the clusters over their laps between the mirrors. Thus, cluster dissociations can be investigated in a time-resolved fashion – as the present research demonstrates – enabling further conclusions about the particles’ properties.

    The MR-ToF mass spectrometer is one of several that have been developed and built at the University of Greifswald. More specifically, it is based on the experience from an instrument delivered to the precision mass spectrometer ISOLTRAP at the European research facility CERN. The instrument at CERN is used for the detection and selection of exotic nuclei and the determination of their binding energies.

    Further Information
    Atomic and Molecular Physics Group at the University of Greifswald’s Institute of Physics https://physik.uni-greifswald.de/en/ag-schweikhard/

    Similar press releases
    (a) concerning atomic clusters
    Subnano lead particles show peculiar decay behavior https://idw-online.de/en/news693212
    (b) concerning CERN experiments
    Laboratory Mass Measurement deepens Insight into Neutron Star Crusts https://idw-online.de/en/news516628
    Ion ping pong reveals forces in atomic nuclei https://idw-online.de/en/news539611
    On the way to heavy elements – short-lived cadmium isotopes in the trap https://idw-online.de/en/news643335
    Unique Behaviour of Mercury Nuclei Finally Explained https://idw-online.de/en/news703453

    Peer-reviewed publications
    Fischer P., Schweikhard L. (2020): ‘Decay-rate power-law exponent as link between dissociation energy and temperature’ in: Physical Review Research. 2, 043177, https://link.aps.org/doi/10.1103/PhysRevResearch.2.043177
    Fischer P., Schweikhard L. (2019): ‘Isotope-resolved photodissociation pathways of lead-doped bismuth clusters from tandem multi-reflection time-of-flight mass spectrometry’ in: Physical Review Research. 1, 033050, https://doi.org/10.1103/PhysRevResearch.1.033050
    Fischer P., Schweikhard L. (2019): ‘Photofragmentation of Bin+/- clusters (n = 2-19) in an electrostatic ion beam trap’ in: The European Physical Journal: Atomic, Molecular, Optical, and plasma Physics. D 73, 105, https://doi.org/10.1140/epjd/e2019-100027-0

    Contacts at the University of Greifswald
    Dr. Paul Fischer and Prof. Dr. Lutz Schweikhard
    Institute of Physics
    Felix-Hausdorff-Straße 6, 17489 Greifswald
    Tel.: +49 3834 420 4700
    lschweik@physik.uni-greifswald.de


    Bilder

    Institute of Physics at the University of Greifswald
    Institute of Physics at the University of Greifswald
    Photo: Magnus Schult


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Physik / Astronomie
    überregional
    Buntes aus der Wissenschaft, Forschungsergebnisse
    Englisch


     

    Institute of Physics at the University of Greifswald


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).